SAMR and TPCK: A Hands-On Approach to Classroom Practice

Ruben R. Puentedura, Ph.D.

Phase 1: Building a Basic SAMR Ladder

Tech allows for the creation of new tasks, previously inconceivable

Modification

Tech allows for significant task redesign

Augmentation

Tech acts as a direct tool substitute, with functional improvement

Substitution

The EdTech Quintet – Associated Practices		
Social	Communication, Collaboration, Sharing	
Mobility	Anytime, Anyplace Learning and Creation	
Visualization	Making Abstract Concepts Tangible	
Storytelling	Knowledge Integration and Transmission	
Gaming	Feedback Loops and Formative Assessment	

Surveying Seymour Papert's Four Expectations

- Expectation 1: suitably designed formative/summative assessment rubrics will show improvement when compared to traditional instruction.
- Expectation 2: students will show more instances of work at progressively higher levels of Bloom's Taxonomy.
- Expectation 3: student work will demonstrate more and more varied critical thinking cognitive skills, particularly in areas related to the examination of their own thinking processes.
- Expectation 4: student daily life will reflect the introduction of the technology. This includes (but is not limited to) directly observable aspects such as reduction in student attrition, increase in engagement with civic processes in their community, and engagement with communities beyond their own.

Bloom's Taxonomy: Cognitive Processes

Anderson & Krathwohl (2001)	Characteristic Processes	
Remember	 Recalling memorized knowledge Recognizing correspondences between memorized knowledge and new material 	
Understand	 Paraphrasing materials Exemplifying concepts, principles Classifying items Summarizing materials 	Extrapolating principlesComparing items
Apply	 Applying a procedure to a familiar task Using a procedure to solve an unfamiliar, but typed task 	
Analyze	 Distinguishing relevant/irrelevant or important/unimportant portions of material Integrating heterogeneous elements into a structure Attributing intent in materials 	
Evaluate	 Testing for consistency, appropriateness, and effectiveness in principles and procedures Critiquing the consistency, appropriateness, and effectiveness of principles and procedures, basing the critique upon appropriate tests 	
Create	 Generating multiple hypotheses based on given criteria Designing a procedure to accomplish an untyped task Inventing a product to accomplish an untyped task 	

Tech allows for the creation of new tasks, previously inconceivable

Modification

Tech allows for significant task redesign

Augmentation

Tech acts as a direct tool substitute, with functional improvement

Substitution

Tech acts as a direct tool substitute, with no functional change

Create **Evaluate** Analyze **Apply Understand** Remember

Tech allows for the creation of new tasks, previously inconceivable

Modification

Tech allows for significant task redesign

Augmentation

Tech acts as a direct tool substitute, with functional improvement

Substitution

Tech acts as a direct tool substitute, with no functional change

Understand

Remember

Tech allows for the creation of new tasks, previously inconceivable

Modification

Tech allows for significant task redesign

Augmentation

Tech acts as a direct tool substitute, with functional improvement

Substitution

Tech acts as a direct tool substitute, with no functional change

Apply

Understand

Tech allows for the creation of new tasks, previously inconceivable

Modification

Tech allows for significant task redesign

Evaluate

Analyze

Augmentation

Tech acts as a direct tool substitute, with functional improvement

Substitution

Tech allows for the creation of new tasks, previously inconceivable

Modification

Tech allows for significant task redesign

Augmentation

Tech acts as a direct tool substitute, with functional improvement

Substitution

Tech acts as a direct tool substitute, with no functional change

Create

Evaluate

Choosing the First SAMR Ladder Project: Three Options

Your Passion:

• If you had to pick one topic from your class that best exemplifies why you became fascinated with the subject you teach, what would it be?

Barriers to Your Students' Progress:

• Is there a topic in your class that a significant number of students get stuck on, and fail to progress beyond?

What Students Will Do In the Future:

• Which topic from your class would, if deeply understood, best serve the interests of your students in future studies or in their lives outside school?

Phase 2: Adding in TPCK

Augmentation

Tech acts as a direct tool substitute, with functional improvement

Substitution

Tech allows for the creation of new tasks, previously inconceivable

Modification
for significant task redes

Augmentation

Tech acts as a direct tool substitute, with functional improvement

Substitution

Tech allows for the creation of new tasks, previously inconceivable

Modification

Tech allows for significant task redesign

Augmentation

Tech acts as a direct tool substitute, with functional improvement

Substitution

Tech allows for the creation of new tasks, previously inconceivable

Modificationh allows for significant task redesign

Augmentation

Tech acts as a direct tool substitute, with functional improvement

Substitution

Phase 3: Responding to 21st Century Learning Needs

Phase 4: Thinking About Trends and Challenges

Key Trends Driving Ed Tech Adoption

Fast (1-2 yrs.)	Rethinking the Roles of Teachers Shift to Deeper Learning Approaches
Mid-Range (3-5 yrs.)	Increasing Focus on OER Increasing Use of Hybrid Learning Designs
Long-Range (5+ yrs.)	Rapid Acceleration of Intuitive Technology Rethinking How Schools Work

Important Ed Tech Developments

Adoption: 1 yr. or less	BYOD Cloud Computing	
Adoption: 2-3 yrs.	Games and Gamification Learning Analytics	
Adoption: 4-5 yrs.	The Internet of Things Wearable Technology	

Significant Challenges Impeding Ed Tech Adoption

Solvable	Difficult	Wicked
understand and know how to solve	understand but solutions are elusive	complex to define, much less address
Authentic Learning Opportunities Integrating Personalized Learning	Complex Thinking & Communication Safety of Student Data	Competition from New Models of Ed Keeping Formal Education Relevant

Key Trends Driving Ed	d Tech Adoption
-----------------------	-----------------

Fast (1-2 yrs.)	Rethinking the Roles of Teachers Shift to Deeper Learning Approaches
Mid-Range (3-5 yrs.)	Increasing Focus on OER Increasing Use of Hybrid Learning Designs
Long-Range (5+ yrs.)	Rapid Acceleration of Intuitive Technology Rethinking How Schools Work

Important Ed Tech Developments

Adoption: 1 yr. or less	BYOD Cloud Computing	
Adoption: 2-3 yrs.	Games and Gamification Learning Analytics	
Adoption: 4-5 yrs.	The Internet of Things Wearable Technology	

Significant Challenges Impeding Ed Tech Adoption

Cigimicant Chancing Companing La 100117 taoption		
Solvable	Difficult	Wicked
understand and know how to solve	understand but solutions are elusive	complex to define, much less address
Authentic Learning Opportunities Integrating Personalized Learning	Complex Thinking & Communication Safety of Student Data	Competition from New Models of Ed Keeping Formal Education Relevant

Hippasus

Blog: http://hippasus.com/rrpweblog/

Email: rubenrp@hippasus.com

Twitter: @rubenrp

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

