Frameworks for Educational Technology: SAMR, the EdTech Quintet, and the Horizon Report

Ruben R. Puentedura, Ph.D.

Tech allows for the creation of new tasks, previously inconceivable

Modification

Tech allows for significant task redesign

Augmentation

Tech acts as a direct tool substitute, with functional improvement

Substitution

Location Position in space

Condition

Mix of natural & artificial features that give meaning to a location

Links

Connections between places

Formal Region

Group of places with similar conditions

Functional Region

Group of places linked together by a flow

Spatial Thinking Skills		
Comparison	How are places similar or different?	
Aura	What is this place's influence on nearby places?	
Region	What nearby places are similar to this one?	
Transition	How do things change between two places?	
Hierarchy	What larger area is this area inside? What smaller areas are inside it?	
Analogy	Analogy What places have similar conditions?	
Pattern	What distinctive arrangements can you see on a map?	
Association	Are these patterns similar?	

Tech allows for the creation of new tasks, previously inconceivable

Modification

Tech allows for significant task redesign

Augmentation

Tech acts as a direct tool substitute, with functional improvement

Substitution

Tech allows for the creation of new tasks, previously inconceivable

Modification

Tech allows for significant task redesign

Augmentation

Tech acts as a direct tool substitute, with functional improvement

Substitution

Tech allows for the creation of new tasks, previously inconceivable

Modification

Tech allows for significant task redesign

Augmentation

Tech acts as a direct tool substitute, with functional improvement

Substitution

Tech allows for the creation of new tasks, previously inconceivable

Modification

Tech allows for significant task redesign

Augmentation

Tech acts as a direct tool substitute, with functional improvement

Substitution

Tech allows for the creation of new tasks, previously inconceivable

Modification

Tech allows for significant task redesign

Augmentation

Tech acts as a direct tool substitute, with functional improvement

Substitution

Tech allows for the creation of new tasks, previously inconceivable

Modification

Tech allows for significant task redesign

Augmentation

Tech acts as a direct tool substitute, with functional improvement

Substitution

Tech allows for the creation of new tasks, previously inconceivable

Modification

ws for significant task redesign

Augmentation

Tech acts as a direct tool substitute, with functional improvement

Substitution

Tech allows for the creation of new tasks, previously inconceivable

lech allows for significant task redesigi

Augmentation

Tech acts as a direct tool substitute, with functional improvement

Substitution

Study	SAMR Level	Description	Effect Size
Ligas (2002)	S	CAI system used to support direct instruction approach for at-risk students.	0.029
Xin & Reith (2001)	A	Multimedia resources provided to contextualize learning of word meanings and concepts.	0.264
Higgins & Raskind (2005)	M	Software/hardware used for text-to-speech, definitions, pronunciation guide for children with reading disabilities.	0.600
Salomon, Globerson & Guterman (1989)	R	Software presents students with reading principles and metacognitive questions as part of the reading process.	1.563

Study	SAMR Classification	Description	Effect Size
Algebra I Effectiveness of Cognitive Tutor Algebra I at Scale, by John F. Pane, Beth Ann Griffin, Daniel F. McCaffrey, Rita Karam	S to A	S: Computerized algebra drills, some tied to realworld scenarios A: Tools for basic visualization; adaptive response to student progress	≈ 0.2 50th perc. → 58th perc.
Earth Science Using Laptops to Facilitate Middle School Science Learning: The Results of Hard Fun, by Alexis M. Berry, Sarah E. Wintle	A to M	A: Interactive tools for concept exploration and visualization M: Narrated animation as final project	 ≈ 0.6 50th perc. → 73rd perc. (≈ 1.4 a month later) (50th perc. → 92nd perc.)

Social	Mobility	Visualization	Storytelling	Gaming
200,000 years	70,000 years	40,000 years	17,000 years	8,000 years

Bookmarks

RSS Feeds

Discussions

Microblogging

Blogging

Wikis

Telepresence

File Sharing

Social	Mobility	Visualization	Storytelling	Gaming
200,000 years	70,000 years	40,000 years	17,000 years	8,000 years

Social	Mobility	Visualization	Storytelling	Gaming
200,000 years	70,000 years	40,000 years	17,000 years	8,000 years

Social	Mobility	Visualization	Storytelling	Gaming
200,000 years	70,000 years	40,000 years	17,000 years	8,000 years

Social	Mobility	Visualization	Storytelling	Gaming
200,000 years	70,000 years	40,000 years	17,000 years	8,000 years

Formal Definition of **Game** (Salen & Zimmerman)

"A game is a system in which players engage in an artificial conflict, defined by rules, that results in a quantifiable outcome."

searching, browsing, accessing, collecting

Discovering

categorizing, providing commentary, analyzing

find differences, similarities and create meaning from them

Annotating

Comparing

linking, referencing

Referring

Scholarly Primitives

selecting according to a criterion, showing relationships of items selected to the original set

Sampling

Illustrating

showing an example, highlighting features within an example

Representing

changing depiction mode, publishing

Tech allows for the creation of new tasks, previously inconceivable

Modification Tech allows for significant task redesign

Augmentation

Tech acts as a direct tool substitute, with functional improvement

Substitution

Redefinition Tech allows for the creation of new tasks, previously inconceivable

Tech allows for significant task redesign

Augmentation

Tech acts as a direct tool substitute, with functional improvement

Substitution

Tech allows for the creation of new tasks, previously inconceivable

Modification

Tech allows for significant task redesign

Augmentation

Tech acts as a direct tool substitute, with functional improvement

Substitution

Tech allows for the creation of new tasks, previously inconceivable

Tech allows for significant task redesig

Augmentation

Tech acts as a direct tool substitute, with functional improvement

Substitution

Location Position in space

Condition

Mix of natural & artificial features that give meaning to a location

Links

Connections between places

Formal Region

Group of places with similar conditions

Functional Region

Group of places linked together by a flow

Tech allows for the creation of new tasks, previously inconceivable

Modification

Tech allows for significant task redesign

Augmentation

Tech acts as a direct tool substitute, with functional improvement

Substitution

Tech allows for the creation of new tasks, previously inconceivable

Modification

allows for significant task redesi

Augmentation

Tech acts as a direct tool substitute, with functional improvement

Substitution

Tech allows for the creation of new tasks, previously inconceivable

Modification

Tech allows for significant task redesign

Augmentation

Tech acts as a direct tool substitute, with functional improvement

Substitution

Tech allows for the creation of new tasks, previously inconceivable

Modification

Tech allows for significant task redesign

Augmentation

Tech acts as a direct tool substitute, with functional improvement

Substitution

Key Trends Driving Ed Tech Adoption

Fast (1-2 yrs.)	Rethinking the Roles of Teachers Shift to Deep Learning Approaches
Mid-Range (3-5 yrs.)	Increasing Focus on Open Content Increasing Use of Hybrid Learning Designs
Long-Range (5+ yrs.)	Rapid Acceleration of Intuitive Technology Rethinking How Schools Work

Important Ed Tech Developments

Adoption: 1 yr. or less	BYOD Cloud Computing
Adoption: 2-3 yrs.	Games and Gamification Learning Analytics
Adoption: 4-5 yrs.	The Internet of Things Wearable Technology

Significant Challenges Impeding Ed Tech Adoption

Solvable	Difficult	Wicked
understand and know how to solve	understand but solutions are elusive	complex to define, much less address
Authentic Learning Opportunities Integrating Personalized Learning	Complex Thinking & Communication Increased Privacy Concerns	Competition from New Models of Ed Keeping Formal Education Relevant

Key Trends Driving Ed Tech Adoption

Fast (1-2 yrs.)	Rethinking the Roles of Teachers Shift to Deep Learning Approaches
Mid-Range (3-5 yrs.)	Increasing Focus on Open Content Increasing Use of Hybrid Learning Designs
Long-Range (5+ yrs.)	Rapid Acceleration of Intuitive Technology Rethinking How Schools Work

Important Ed Tech Developments

Adoption: 1 yr. or less	BYOD Cloud Computing
Adoption: 2-3 yrs.	Games and Gamification Learning Analytics
Adoption: 4-5 yrs.	The Internet of Things Wearable Technology

Significant Challenges Impeding Ed Tech Adoption

Solvable understand and know how to solve	Difficult understand but solutions are elusive	Wicked complex to define, much less address
Authentic Learning Opportunities Integrating Personalized Learning	Complex Thinking & Communication Increased Privacy Concerns	Competition from New Models of Ed Keeping Formal Education Relevant

Hippasus

Blog: http://hippasus.com/rrpweblog/

Email: rubenrp@hippasus.com

Twitter: @rubenrp

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

