SAMR: A Contextualized Introduction

Ruben R. Puenteura, Ph.D.
Redefinition
Tech allows for the creation of new tasks, previously inconceivable

Modification
Tech allows for significant task redesign

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Substitution
Tech acts as a direct tool substitute, with no functional change

Ruben R. Puentedura, As We May Teach: Educational Technology, From Theory Into Practice. (2009)
Substitution
Tech acts as a direct tool substitute, with no functional change

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Modification
Tech allows for significant task redesign

Redefinition
Tech allows for the creation of new tasks, previously inconceivable
Substitution
Tech acts as a direct tool substitute, with no functional change

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Modification
Tech allows for significant task redesign

Redefinition
Tech allows for the creation of new tasks, previously inconceivable
Redefinition
Tech allows for the creation of new tasks, previously inconceivable.

Modification
Tech allows for significant task redesign.

Augmentation
Tech acts as a direct tool substitute, with functional improvement.

Substitution
Tech acts as a direct tool substitute, with no functional change.
Redefinition
Tech allows for the creation of new tasks, previously inconceivable

Modification
Tech allows for significant task redesign

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Substitution
Tech acts as a direct tool substitute, with no functional change
Redefinition
Tech allows for the creation of new tasks, previously inconceivable

Modification
Tech allows for significant task redesign

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Substitution
Tech acts as a direct tool substitute, with no functional change

Ruben R. Puentedura, As We May Teach: Educational Technology, From Theory Into Practice. (2009)
<table>
<thead>
<tr>
<th>Study</th>
<th>SAMR Classification</th>
<th>Description</th>
<th>Effect Size</th>
</tr>
</thead>
</table>
| **Algebra I** | S to A | S: Computerized algebra drills, some tied to real-world scenarios
A: Tools for basic visualization; adaptive response to student progress | ≈ 0.2 |
| *Effectiveness of Cognitive Tutor Algebra I at Scale*, by John F. Pane, Beth Ann Griffin, Daniel F. McCaffrey, Rita Karam | | 50th perc. → 58th perc. | |
| **Earth Science** | A to M | A: Interactive tools for concept exploration and visualization
M: Narrated animation as final project | ≈ 0.6 |
| *Using Laptops to Facilitate Middle School Science Learning: The Results of Hard Fun*, by Alexis M. Berry, Sarah E. Wintle | | 50th perc. → 73rd perc.
(≈ 1.4 a month later)
(50th perc. → 92nd perc.) | |
<table>
<thead>
<tr>
<th>Engaged Thinker</th>
<th>Ethical Citizen</th>
<th>Entrepreneurial Spirit</th>
</tr>
</thead>
<tbody>
<tr>
<td>“I collaborate to create new knowledge.”</td>
<td>“I do the right thing because it is the right thing to do.”</td>
<td>“I create new opportunities.”</td>
</tr>
</tbody>
</table>

- know how to learn
- think critically
- identify and solve complex problems
- manage information
- innovate
- create opportunities
- apply multiple literacies
- communicate well and cooperate with others
- demonstrate global and cultural understanding
- identify and apply career and life skills

Inspiring Education: a dialogue with Albertans. (2010)
Cross-Disciplinary Knowledge/Synthesis

Core Content Knowledge

Information Literacy

Foundational Knowledge

Creativity & Innovation

Cultural Competence

21st Century Learning

Meta Knowledge

Humanistic Knowledge

Problem Solving & Critical Thinking

Communication & Collaboration

Life & Job Skills

Ethical & Emotional Awareness

21st Century Learning

Core Content Knowledge

Foundational Knowledge

Cross-Disciplinary Knowledge/Synthesis

Apply multiple literacies

Information Literacy

Manage information

Creativity & Innovation

Innovate

Create opportunities

Problem Solving & Critical Thinking

Meta Knowledge

Know how to learn

Think critically

Identify and solve complex problems

Communication & Collaboration

Humanistic Knowledge

Life & Job Skills

Ethical & Emotional Awareness

Demonstrate global and cultural understanding

Life & Job Skills

Identify and apply career and life skills

Communicate well and cooperate with others
<table>
<thead>
<tr>
<th>Social</th>
<th>Mobility</th>
<th>Visualization</th>
<th>Storytelling</th>
<th>Gaming</th>
</tr>
</thead>
<tbody>
<tr>
<td>200,000 years</td>
<td>70,000 years</td>
<td>40,000 years</td>
<td>17,000 years</td>
<td>8,000 years</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Social</th>
<th>Mobility</th>
<th>Visualization</th>
<th>Storytelling</th>
<th>Gaming</th>
</tr>
</thead>
<tbody>
<tr>
<td>200,000 years</td>
<td>70,000 years</td>
<td>40,000 years</td>
<td>17,000 years</td>
<td>8,000 years</td>
</tr>
</tbody>
</table>

![Images of artifacts related to social mobility, visualization, storytelling, and gaming through time.](image_url)
Marzano: Six Steps to Effective Vocabulary Instruction

Step 1: The Teacher Provides a Description, Explanation, or Example of the New Term

Step 2: Students Restate the Explanation of the New Term in Their Own Words

Step 3: Students Create a Nonlinguistic Representation of the Term

Step 4: Students Periodically Do Activities That Help Them Add to Their Knowledge of Vocabulary Terms

Step 5: Periodically Students Are Asked to Discuss the Terms with One Another

Step 6: Periodically Students Are Involved in Games That Allow Them to Play with the Terms

Redefinition
Tech allows for the creation of new tasks, previously inconceivable.

Modification
Tech allows for significant task redesign.

Augmentation
Tech acts as a direct tool substitute, with functional improvement.

Substitution
Tech acts as a direct tool substitute, with no functional change.
Redefinition
Tech allows for the creation of new tasks, previously inconceivable

Modification
Tech allows for significant task redesign

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Substitution
Tech acts as a direct tool substitute, with no functional change
Substitution
Tech acts as a direct tool substitute, with no functional change

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Modification
Tech allows for significant task redesign

Redefinition
Tech allows for the creation of new tasks, previously inconceivable
Redefinition
Tech allows for the creation of new tasks, previously inconceivable

Modification
Tech allows for significant task redesign

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Substitution
Tech acts as a direct tool substitute, with no functional change
<table>
<thead>
<tr>
<th>Social</th>
<th>Mobility</th>
<th>Visualization</th>
<th>Storytelling</th>
<th>Gaming</th>
</tr>
</thead>
<tbody>
<tr>
<td>200,000 years</td>
<td>70,000 years</td>
<td>40,000 years</td>
<td>17,000 years</td>
<td>8,000 years</td>
</tr>
</tbody>
</table>
Learning Environments

- Contextual Search
- Augmented Reality

- Cloud Resources
- Mobile Tools

- Sensors
- Recorders
<table>
<thead>
<tr>
<th>Social</th>
<th>Mobility</th>
<th>Visualization</th>
<th>Storytelling</th>
<th>Gaming</th>
</tr>
</thead>
<tbody>
<tr>
<td>200,000 years</td>
<td>70,000 years</td>
<td>40,000 years</td>
<td>17,000 years</td>
<td>8,000 years</td>
</tr>
</tbody>
</table>
Substitution
Tech acts as a direct tool substitute, with no functional change

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Modification
Tech allows for significant task redesign

Redefinition
Tech allows for the creation of new tasks, previously inconceivable
Augmentation
Tech acts as a direct tool substitute, with functional improvement

Substitution
Tech acts as a direct tool substitute, with no functional change

Redefinition
Tech allows for the creation of new tasks, previously inconceivable

Modification
Tech allows for significant task redesign

Substitution
Tech acts as a direct tool substitute, with no functional change
Redefinition
Tech allows for the creation of new tasks, previously inconceivable.

Modification
Tech allows for significant task redesign.

Augmentation
Tech acts as a direct tool substitute, with functional improvement.

Substitution
Tech acts as a direct tool substitute, with no functional change.
Redefinition
Tech allows for the creation of new tasks, previously inconceivable

Modification
Tech allows for significant task redesign

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Substitution
Tech acts as a direct tool substitute, with no functional change
<table>
<thead>
<tr>
<th>Social</th>
<th>Mobility</th>
<th>Visualization</th>
<th>Storytelling</th>
<th>Gaming</th>
</tr>
</thead>
<tbody>
<tr>
<td>200,000 years</td>
<td>70,000 years</td>
<td>40,000 years</td>
<td>17,000 years</td>
<td>8,000 years</td>
</tr>
<tr>
<td>Social</td>
<td>Mobility</td>
<td>Visualization</td>
<td>Storytelling</td>
<td>Gaming</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>---------------</td>
<td>--------------</td>
<td>--------</td>
</tr>
<tr>
<td>200,000 years</td>
<td>70,000 years</td>
<td>40,000 years</td>
<td>17,000 years</td>
<td>8,000 years</td>
</tr>
</tbody>
</table>
Formal Definition of **Game** (Salen & Zimmerman)

“A game is a system in which players engage in an artificial conflict, defined by rules, that results in a quantifiable outcome.”

Gersmehl:
Teaching Geography – Four Cornerstones

• Location
 • Position in space
• Condition
 • Mix of natural & artificial features that give meaning to a location
• Links
 • Connections between places
• Region
 • Formal region: group of places with similar conditions
 • Functional region: group of places linked together by a flow
Substitution
Tech acts as a direct tool substitute, with no functional change

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Modification
Tech allows for significant task redesign

Redefinition
Tech allows for the creation of new tasks, previously inconceivable
Substitution
Tech acts as a direct tool substitute, with no functional change

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Modification
Tech allows for significant task redesign

Redefinition
Tech allows for the creation of new tasks, previously inconceivable
Substitution
Tech acts as a direct tool substitute, with no functional change

Modification
Tech allows for significant task redesign

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Redefinition
Tech allows for the creation of new tasks, previously inconceivable
Redefinition
Tech allows for the creation of new tasks, previously inconceivable

Modification
Tech allows for significant task redesign

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Substitution
Tech acts as a direct tool substitute, with no functional change