SAMR: Approaches to Redefinition

Ruben R. Puenteđura, Ph.D.
Substitution
Tech acts as a direct tool substitute, with no functional change

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Modification
Tech allows for significant task redesign

Redefinition
Tech allows for the creation of new tasks, previously inconceivable
<table>
<thead>
<tr>
<th>Social</th>
<th>Mobility</th>
<th>Visualization</th>
<th>Storytelling</th>
<th>Gaming</th>
</tr>
</thead>
<tbody>
<tr>
<td>200,000 years</td>
<td>70,000 years</td>
<td>40,000 years</td>
<td>17,000 years</td>
<td>8,000 years</td>
</tr>
</tbody>
</table>

Images of ancient artifacts: skull, spear, statue, mural, bone.
Figure 1 captures the key qualities—the future is already here. Six Cs form the agenda: character, citizenship, communication, critical thinking and problem solving, collaboration and teamwork, and creativity and imagination.

As we delve into the meaning of these concepts, it is important to stress that we should not launch into an abstract discussion. In the next period of development, these core priorities must be defined, operationalized in practice, measured to mark success and to clarify progress and next steps, and widely shared in terms of spreading what works. This process of specificity and dissemination is our strength. We must put it to good use for the next phase of success.

Figure 1. The capacity of educators in Ontario, as noted, is at such a high level as a result of the strategies of the past nine years that much of the leadership—what we might call leading from the middle—is already in the system. It needs to be catalyzed and spread throughout the province, including establishing clarity of each of the six clusters and their interrelationships, learning experiences that develop the skills and dispositions in question, and the means of measuring and fostering progress in their development. But the middle cannot lead in a vacuum. Focused leadership from the government will continue to be essential.

Michael Fullan. Great to Excellent: Launching the Next Stage of Ontario’s Education Agenda. (2013)
SAMR: Framing Goals for Transformation
Choosing the First SAMR Ladder Project: Three Options

• **Your Passion:**
 • If you had to pick one topic from your class that best exemplifies why you became fascinated with the subject you teach, what would it be?

• **Barriers to Your Students’ Progress:**
 • Is there a topic in your class that a significant number of students get stuck on, and fail to progress beyond?

• **What Students Will Do In the Future:**
 • Which topic from your class would, if deeply understood, best serve the interests of your students in future studies or in their lives outside school?
Brief Lecture or Group Discussion (~10 minutes)

ConcepTest (~1-2 minutes)

- Fewer than 30% of students answer correctly: The instructor revisits and explains the concept
- Between 30-75% of students answer correctly: Peer Discussion: students try to convince each other (~2-3 minutes)
- More than 75% of students answer correctly: The instructor explains remaining misconceptions

ConcepTest (~1-2 minutes)

Redefinition
Tech allows for the creation of new tasks, previously inconceivable

Modification
Tech allows for significant task redesign

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Substitution
Tech acts as a direct tool substitute, with no functional change
Redefinition
Tech allows for the creation of new tasks, previously inconceivable

Modification
Tech allows for significant task redesign

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Substitution
Tech acts as a direct tool substitute, with no functional change
Redefinition
Tech allows for the creation of new tasks, previously inconceivable

Modification
Tech allows for significant task redesign

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Substitution
Tech acts as a direct tool substitute, with no functional change
Redefinition
Tech allows for the creation of new tasks, previously inconceivable

Modification
Tech allows for significant task redesign

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Substitution
Tech acts as a direct tool substitute, with no functional change
The SAMR Ladder:
Questions and Transitions

• **Substitution:**
 • What will I gain by replacing the older technology with the new technology?

• **Substitution to Augmentation:**
 • Have I added an improvement to the task process that could not be accomplished with the older technology at a fundamental level?
 • How does this feature contribute to my design?

• **Augmentation to Modification:**
 • How is the original task being modified?
 • Does this modification fundamentally depend upon the new technology?
 • How does this modification contribute to my design?

• **Modification to Redefinition:**
 • What is the new task?
 • Will any portion of the original task be retained?
 • How is the new task uniquely made possible by the new technology?
 • How does it contribute to my design?
Redefinition
Tech allows for the creation of new tasks, previously inconceivable

Modification
Tech allows for significant task redesign

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Substitution
Tech acts as a direct tool substitute, with no functional change
Redefinition
Tech allows for the creation of new tasks, previously inconceivable

Modification
Tech allows for significant task redesign

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Substitution
Tech acts as a direct tool substitute, with no functional change
Redefinition
Tech allows for the creation of new tasks, previously inconceivable

Modification
Tech acts as a direct tool substitute, with functional improvement

Augmentation
Tech acts as a direct tool substitute, with no functional change

Substitution
Tech acts as a direct tool substitute, with no functional change
Redefinition
Tech allows for the creation of new tasks, previously inconceivable

Modification
Tech allows for significant task redesign

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Substitution
Tech acts as a direct tool substitute, with no functional change
The PCK Question
Gersmehl: Teaching Geography – Four Cornerstones

- Location
 - Position in space

- Condition
 - Mix of natural & artificial features that give meaning to a location

- Links
 - Connections between places

- Region
 - Formal region: group of places with similar conditions
 - Functional region: group of places linked together by a flow
Substitution
Tech acts as a direct tool substitute, with no functional change

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Modification
Tech allows for significant task redesign

Redefinition
Tech allows for the creation of new tasks, previously inconceivable
Substitution
Tech acts as a direct tool substitute, with no functional change

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Modification
Tech allows for significant task redesign

Redefinition
Tech allows for the creation of new tasks, previously inconceivable
Redefinition
Tech allows for the creation of new tasks, previously inconceivable

Modification
Tech allows for significant task redesign

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Substitution
Tech acts as a direct tool substitute, with no functional change
Redefinition
Tech allows for the creation of new tasks, previously inconceivable

Modification
Tech allows for significant task redesign

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Substitution
Tech acts as a direct tool substitute, with no functional change
Design From Expectations
Seymour Papert: Four Expectations

- **Expectation 1**: the scholastically unsuccessful group among the students will advance by several grade levels on standard achievement tests in mathematics and language. We shall, of course, confirm the significance of any such observation by comparison with a control group matched on a series of variables set up before the outset of the experiment.

- **Expectation 2**: observers will agree that the student in the experiment not only learned more than in a traditional class, but learned it in a more articulate, richer, more integrated way.

- **Expectation 3**: students will develop, or adapt concepts and metaphors derived from computers and use them not only as intellectual tools in the construction of models of such things as "number" and "theory" but also in elaborating models of their own cognitive processes. This will in turn have an impact on their styles of learning and problem-solving.

- **Expectation 4**: the use of computer metaphors by children will have effects beyond what is normally classed as "cognitive skill". We expect it will influence their language, imagery, games, social interactions, relationships, etc…

Measuring the Four Expectations

- **Expectation 1**: suitably designed formative/summative assessment rubrics will show improvement when compared to traditional instruction.

- **Expectation 2**: students will show more instances of work at progressively higher levels of Bloom’s Taxonomy.

- **Expectation 3**: student work will demonstrate more – and more varied – critical thinking cognitive skills, particularly in areas related to the examination of their own thinking processes.

- **Expectation 4**: student daily life will reflect the introduction of the technology. This includes (but is not limited to) directly observable aspects such as reduction in student attrition, increase in engagement with civic processes in their community, and engagement with communities beyond their own.
“Practice in a classroom is formative to the extent that evidence about student achievement is elicited, interpreted, and used by teachers, learners, or their peers, to make decisions about the next steps in instruction that are likely to be better, or better founded, than the decisions they would have taken in the absence of the evidence that was elicited.”

Wiliam: A Framework for Formative Assessment

<table>
<thead>
<tr>
<th>Teacher</th>
<th>Where the learner is going</th>
<th>Where the learner is right now</th>
<th>How to get there</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Clarifying learning intentions and criteria for success</td>
<td>Engineering effective classroom discussions and other learning tasks that elicit evidence of student understanding</td>
<td>Providing feedback that moves learners forward</td>
</tr>
<tr>
<td>Peer</td>
<td>Understanding and sharing learning intentions and criteria for success</td>
<td>4</td>
<td>Activating students as instructional resources for one another</td>
</tr>
<tr>
<td>Learner</td>
<td>Understanding learning intentions and criteria for success</td>
<td>5</td>
<td>Activating students as the owners of their own learning</td>
</tr>
</tbody>
</table>

Dylan Wiliam, *Embedded Formative Assessment*. Solution Tree (2011)
Bloom's Taxonomy: Cognitive Processes

<table>
<thead>
<tr>
<th>Anderson & Krathwohl (2001)</th>
<th>Characteristic Processes</th>
</tr>
</thead>
</table>
| **Remember** | • Recalling memorized knowledge
 • Recognizing correspondences between memorized knowledge and new material |
| **Understand** | • Paraphrasing materials
 • Exemplifying concepts, principles
 • Classifying items
 • Summarizing materials
 • Extrapolating principles
 • Comparing items |
| **Apply** | • Applying a procedure to a familiar task
 • Using a procedure to solve an unfamiliar, but typed task |
| **Analyze** | • Distinguishing relevant/irrelevant or important/unimportant portions of material
 • Integrating heterogeneous elements into a structure
 • Attributing intent in materials |
| **Evaluate** | • Testing for consistency, appropriateness, and effectiveness in principles and procedures
 • Critiquing the consistency, appropriateness, and effectiveness of principles and procedures, basing the critique upon appropriate tests |
| **Create** | • Generating multiple hypotheses based on given criteria
 • Designing a procedure to accomplish an untyped task
 • Inventing a product to accomplish an untyped task |
<table>
<thead>
<tr>
<th>Skill</th>
<th>Subskills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpretation</td>
<td>Categorization, Decoding Significance, Clarifying Meaning</td>
</tr>
<tr>
<td>Analysis</td>
<td>Examining Ideas, Identifying Arguments, Analyzing Arguments</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Assessing Claims, Assessing Arguments</td>
</tr>
<tr>
<td>Inference</td>
<td>Querying Evidence, Conjecturing Alternatives, Drawing Conclusions</td>
</tr>
<tr>
<td>Explanation</td>
<td>Stating Results, Justifying Procedures, Presenting Arguments</td>
</tr>
<tr>
<td>Self-Regulation</td>
<td>Self-examination, Self-correction</td>
</tr>
</tbody>
</table>
Marzano: Six Steps to Effective Vocabulary Instruction

Step 1: The Teacher Provides a Description, Explanation, or Example of the New Term

Step 2: Students Restate the Explanation of the New Term in Their Own Words

Step 3: Students Create a Nonlinguistic Representation of the Term

Step 4: Students Periodically Do Activities That Help Them Add to Their Knowledge of Vocabulary Terms

Step 5: Periodically Students Are Asked to Discuss the Terms with One Another

Step 6: Periodically Students Are Involved in Games That Allow Them to Play with the Terms

Substitution
Tech acts as a direct tool substitute, with no functional change

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Modification
Tech allows for significant task redesign

Redefinition
Tech allows for the creation of new tasks, previously inconceivable
Redefinition
Tech allows for the creation of new tasks, previously inconceivable

Modification
Tech allows for significant task redesign

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Substitution
Tech acts as a direct tool substitute, with no functional change
Substitution
Tech acts as a direct tool substitute, with no functional change.

Augmentation
Tech acts as a direct tool substitute, with functional improvement.

Modification
Tech allows for significant task redesign.

Redefinition
Tech allows for the creation of new tasks, previously inconceivable.
Redefinition
Tech allows for the creation of new tasks, previously inconceivable

Modification
Tech allows for significant task redesign

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Substitution
Tech acts as a direct tool substitute, with no functional change
Resources

- TPCK - Technological Pedagogical Content Knowledge. Online at: http://tpack.org