SAMR: Getting To Transformation

Ruben R. PuenteDura, Ph.D.
SAMR: Framing Goals for Transformation
Substitution
Tech acts as a direct tool substitute, with no functional change

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Modification
Tech allows for significant task redesign

Redefinition
Tech allows for the creation of new tasks, previously inconceivable

Enhancement

Transformation
Choosing Your First SAMR Ladder Project: Three Options

• **Your Passion:**
 • If you had to pick one topic from your class that best exemplifies why you became fascinated with the subject you teach, what would it be?

• **Barriers to Your Students’ Progress:**
 • Is there a topic in your class that a significant number of students get stuck on, and fail to progress beyond?

• **What Students Will Do In the Future:**
 • Which topic from your class would, if deeply understood, best serve the interests of your students in future studies or in their lives outside school?
The SAMR Ladder: Questions and Transitions

- **Substitution:**
 - What will I gain by replacing the older technology with the new technology?

- **Substitution to Augmentation:**
 - Have I added an improvement to the task process that could not be accomplished with the older technology at a fundamental level?
 - How does this feature contribute to my design?

- **Augmentation to Modification:**
 - How is the original task being modified?
 - Does this modification fundamentally depend upon the new technology?
 - How does this modification contribute to my design?

- **Modification to Redefinition:**
 - What is the new task?
 - Will any portion of the original task be retained?
 - How is the new task uniquely made possible by the new technology?
 - How does it contribute to my design?
Design From Expectations
Seymour Papert: Four Expectations

• **Expectation 1:** the scholastically unsuccessful group among the students will advance by several grade levels on standard achievement tests in mathematics and language. We shall, of course, confirm the significance of any such observation by comparison with a control group matched on a series of variables set up before the outset of the experiment.

• **Expectation 2:** observers will agree that the student in the experiment not only learned more than in a traditional class, but learned it in a more articulate, richer, more integrated way.

• **Expectation 3:** students will develop, or adapt concepts and metaphors derived from computers and use them not only as intellectual tools in the construction of models of such things as "number" and "theory" but also in elaborating models of their own cognitive processes. This will in turn have an impact on their styles of learning and problem-solving.

• **Expectation 4:** the use of computer metaphors by children will have effects beyond what is normally classed as "cognitive skill". We expect it will influence their language, imagery, games, social interactions, relationships, etc…
Measuring the Four Expectations

- **Expectation 1**: suitably designed formative/summative assessment rubrics will show improvement when compared to traditional instruction.

- **Expectation 2**: students will show more instances of work at progressively higher levels of Bloom's Taxonomy.

- **Expectation 3**: student work will demonstrate more – and more varied – critical thinking cognitive skills, particularly in areas related to the examination of their own thinking processes.

- **Expectation 4**: student daily life will reflect the introduction of the technology. This includes (but is not limited to) directly observable aspects such as reduction in student attrition, increase in engagement with civic processes in their community, and engagement with communities beyond their own.
“Practice in a classroom is formative to the extent that evidence about student achievement is elicited, interpreted, and used by teachers, learners, or their peers, to make decisions about the next steps in instruction that are likely to be better, or better founded, than the decisions they would have taken in the absence of the evidence that was elicited.”

Wiliam: A Framework for Formative Assessment

<table>
<thead>
<tr>
<th>Role</th>
<th>Where the learner is going</th>
<th>Where the learner is right now</th>
<th>How to get there</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher</td>
<td>Clarifying learning intentions and criteria for success</td>
<td>Engineering effective classroom discussions and other learning tasks that elicit evidence of student understanding</td>
<td>Providing feedback that moves learners forward</td>
</tr>
<tr>
<td>Peer</td>
<td>Understanding and sharing learning intentions and criteria for success</td>
<td>Activating students as instructional resources for one another</td>
<td></td>
</tr>
<tr>
<td>Learner</td>
<td>Understanding learning intentions and criteria for success</td>
<td>Activating students as the owners of their own learning</td>
<td></td>
</tr>
</tbody>
</table>
Bloom's Taxonomy: Cognitive Processes

<table>
<thead>
<tr>
<th>Anderson & Krathwohl (2001)</th>
<th>Characteristic Processes</th>
</tr>
</thead>
</table>
| **Remember** | • Recalling memorized knowledge
 • Recognizing correspondences between memorized knowledge and new material |
| **Understand** | • Paraphrasing materials
 • Exemplifying concepts, principles
 • Classifying items
 • Summarizing materials
 • Extrapolating principles
 • Comparing items |
| **Apply** | • Applying a procedure to a familiar task
 • Using a procedure to solve an unfamiliar, but typed task |
| **Analyze** | • Distinguishing relevant/irrelevant or important/unimportant portions of material
 • Integrating heterogeneous elements into a structure
 • Attributing intent in materials |
| **Evaluate** | • Testing for consistency, appropriateness, and effectiveness in principles and procedures
 • Critiquing the consistency, appropriateness, and effectiveness of principles and procedures, basing the critique upon appropriate tests |
| **Create** | • Generating multiple hypotheses based on given criteria
 • Designing a procedure to accomplish an untyped task
 • Inventing a product to accomplish an untyped task |

Facione: Critical Thinking – Cognitive Skills and Subskills

<table>
<thead>
<tr>
<th>Skill</th>
<th>Subskills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpretation</td>
<td>Categorization</td>
</tr>
<tr>
<td></td>
<td>Decoding Significance</td>
</tr>
<tr>
<td></td>
<td>Clarifying Meaning</td>
</tr>
<tr>
<td>Analysis</td>
<td>Examining Ideas</td>
</tr>
<tr>
<td></td>
<td>Identifying Arguments</td>
</tr>
<tr>
<td></td>
<td>Analyzing Arguments</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Assessing Claims</td>
</tr>
<tr>
<td></td>
<td>Assessing Arguments</td>
</tr>
<tr>
<td>Inference</td>
<td>Querying Evidence</td>
</tr>
<tr>
<td></td>
<td>Conjecturing Alternatives</td>
</tr>
<tr>
<td></td>
<td>Drawing Conclusions</td>
</tr>
<tr>
<td>Explanation</td>
<td>Stating Results</td>
</tr>
<tr>
<td></td>
<td>Justifying Procedures</td>
</tr>
<tr>
<td></td>
<td>Presenting Arguments</td>
</tr>
<tr>
<td>Self-Regulation</td>
<td>Self-examination</td>
</tr>
<tr>
<td></td>
<td>Self-correction</td>
</tr>
</tbody>
</table>
Understanding Science: How Science Works
Redefinition
Tech allows for the creation of new tasks, previously inconceivable

Modification
Tech allows for significant task redesign

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Substitution
Tech acts as a direct tool substitute, with no functional change
Redefinition
Tech allows for the creation of new tasks, previously inconceivable

Modification
Tech allows for significant task redesign

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Substitution
Tech acts as a direct tool substitute, with no functional change
Redefinition
Tech allows for the creation of new tasks, previously inconceivable

Modification
Tech allows for significant task redesign

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Substitution
Tech acts as a direct tool substitute, with no functional change
Substitution
Tech acts as a direct tool substitute, with no functional change

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Modification
Tech allows for significant task redesign

Redefinition
Tech allows for the creation of new tasks, previously inconceivable
The PCK Question
Why Study History?

• **Problematic claims:**

 • *To learn lessons for the present* - implies definite predictions of an unknowable future

 • Better: *To draw lessons for consideration* - examples through which we might contemplate our future actions

 • *History provides us with an identity* - true, but the past as a basis for identity can also become a prison for the present, limiting choices for action and for seeing ourselves

 • *To divine essential aspects of the human condition* - not only are such essences not in evidence, assuming that they exist can have a high price

• **Stronger reasons:**

 • *Enjoyment*

 • *A tool for thought* - exploring an alternative world makes us more aware of our own lives and contexts

 • *To be made aware of the possibility of doing things differently* - history is an argument, showing that there have always been many courses of action, many ways of being

Does the question represent an important issue to historical and contemporary times?

Is the question debatable?

Does the question represent a reasonable amount of content?

Will the question hold the interest of students?

Is the question appropriate given the materials available?

Is the question challenging for the students you are teaching?

What organizing historical concepts will be emphasized?

References:
Information Literacy and Reading Comprehension: Digital Storytelling and Visualization Tools
<table>
<thead>
<tr>
<th></th>
<th>Social</th>
<th>Mobility</th>
<th>Visualization</th>
<th>Storytelling</th>
<th>Gaming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (years)</td>
<td>200,000</td>
<td>70,000</td>
<td>40,000</td>
<td>17,000</td>
<td>8,000</td>
</tr>
</tbody>
</table>
Narrative sources; Narrative constraints

Pictorial vocabulary; Narrative transitions; Text/image integration

CDS Seven Elements; Montage structures

Narrative structures; Narrative flows

Ludic elements

Image Assembly → Sequential Art → Moving Image → Interactive Media → Interactive Fiction

Infinite Canvas

Narrative sources; Narrative constraints

Pictorial vocabulary; Narrative transitions; Text/image integration

CDS Seven Elements; Montage structures

Narrative structures; Narrative flows

Ludic elements
Information Literacy and Reading Comprehension: Research Needs and Social Structures
Scholarly Primitives: What Methods Do Humanities Researchers Have in Common and How Might Our Tools Reflect This?

Community Types

- **Communities of Practice**: A group of people with a common interest or practice who share information and/or network.
- **Teams**: Communities working on a shared goal for a particular project or function.
- **Technical Support Groups**: Provide technical support for a particular software or hardware tool.
- **IdeaLabs**: Communities in which members brainstorm around a set of questions or issues for a limited period of time, usually one to three days long.
- **Recreation**: Communities devoted to recreational activities unrelated to work.

A Basic Toolkit

• Bookmarks: Delicious, Diigo

• RSS Feeds: Reeder

• Forums: itslearning

• Microblogging: Twitter

• Blogging: WordPress

• Wikis: MediaWiki
Framing Cross-Disciplinary Work
Three Categories

• Convergent Design
 • What is a common underlying feature connecting different activities in different subject areas?
 • Example: how does marketing appear as a common feature to be addressed across vocational areas?

• Divergent Design
 • What do different disciplines have to say about one central theme?
 • Example: what do different subject areas contribute to the understanding of the European Union?

• Challenge Based Learning
 • How do we go from a big idea, to a challenge, to implementing a solution, to assessing it?
 • Example: what challenge and response could we derive from the idea of sustainability?
An authentic connection between academic disciplines and real world experience
• A framework and workflow to develop 21st century skills
• The purposeful use of technology for researching, analyzing, organizing, collaborating, communicating, publishing and reflecting.
• The opportunity for learners to do something important now, rather than waiting until they are finished with their schooling
• The documentation and assessment of the learning experience from challenge to solution
• An environment for deep reflection on teaching and learning
• A process that places students in charge of their learning

These attributes enable Challenge Based Learning to engage all learners, provide them with valuable skills, span the divide between formal and informal learning, and embrace a student's digital life.

Key Components
The Challenge Based Learning process begins with a big idea and cascades to the following: an essential question, a challenge, guiding questions, activities, and resources, a solution, implementation, evaluation, reflection, assessment, and publishing.

The Big Idea:
The big idea is a broad concept that can be explored in multiple ways, is engaging, and has importance to learners, and the larger society. Examples of big ideas are Resilience, Separation, Creativity, Health, Sustainability, and Democracy.

Essential Question:
By design, the big idea allows for the generation of a wide variety of essential questions. Eventually the process narrows to one essential question that reflects the interests of the learners and the needs of their community.

The Challenge:
From the essential question a concise challenge is articulated that asks the learners to create a specific solution that will result in concrete, meaningful action.

Guiding Questions, Activities and Resources:
Generated by the learners, guiding questions represent the knowledge needed to successfully develop a solution and provide a map for the learning process. The learners identify lessons, simulations, activities, and content resources, to answer the guiding questions and set the foundation for them to develop innovative, insightful, and realistic solutions.

Solutions:
Each challenge is stated broadly enough to allow for a variety of solutions. The solution should be thoughtful, concrete, clearly articulated and actionable in the local community.
Redefinition
Tech allows for the creation of new tasks, previously inconceivable

Modification
Tech allows for significant task redesign

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Substitution
Tech acts as a direct tool substitute, with no functional change

Big Idea
Redefinition
Tech allows for the creation of new tasks, previously inconceivable

Modification
Tech allows for significant task redesign

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Substitution
Tech acts as a direct tool substitute, with no functional change

Solution
Substitution
Tech acts as a direct tool substitute, with no functional change

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Modification
Tech allows for significant task redesign

Redefinition
Tech allows for the creation of new tasks, previously inconceivable

Evaluation
The CBL Process

Collaborative Space
- How will the teams communicate?
- Where will resources be shared?

Introduction
- Why is this idea important to the students?
- Why is this idea important to the community?

Team Formation
- What makes up a productive design team?
- How do we capitalize on everyone’s skills?

Assessment
- How will the process be assessed?
- How will the solution be assessed?

Guiding Questions
- What do we need to know in order to meet the challenge?

Guiding Activities
- What do we need to do to answer our guiding questions?
- What resources are needed?

Solution Development
- How do we meet the challenge?
- Is the solution justified?

Implement and Assess
- How can the solution be tested?
- Did the solution work?

Document/Reflect
- What did we learn?
- What would we do differently?

Publish
- How do we share our results?
- What is the story behind the solution?
Thinking About Assessment
Brief Lecture or Group Discussion (~10 minutes)

ConcepTest (~1-2 minutes)

Fewer than 30% of students answer correctly
- The instructor revisits and explains the concept

Between 30-75% of students answer correctly
- Peer Discussion: students try to convince each other (~2-3 minutes)
- ConcepTest (~1-2 minutes)

More than 75% of students answer correctly
- The instructor explains remaining misconceptions

Substitution
Tech acts as a direct tool substitute, with no functional change

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Modification
Tech allows for significant task redesign

Redefinition
Tech allows for the creation of new tasks, previously inconceivable
Substitution
Tech acts as a direct tool substitute, with no functional change

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Modification
Tech allows for significant task redesign

Redefinition
Tech allows for the creation of new tasks, previously inconceivable
Redefinition
Tech allows for the creation of new tasks, previously inconceivable

Modification
Tech allows for significant task redesign

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Substitution
Tech acts as a direct tool substitute, with no functional change

Which of the following would you say most accurately represents the theme of ephemerality in the Sonnets?
References to seasonal changes
Redefinition
Tech allows for the creation of new tasks, previously inconceivable

Modification
Tech allows for significant task redesign

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Substitution
Tech acts as a direct tool substitute, with no functional change
Wiliam: A Framework for Formative Assessment

<table>
<thead>
<tr>
<th>Teacher</th>
<th>Where the learner is going</th>
<th>Where the learner is right now</th>
<th>How to get there</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Clarifying learning intentions and criteria for success</td>
<td>2 Engineering effective classroom discussions and other learning tasks that elicit evidence of student understanding</td>
<td>3 Providing feedback that moves learners forward</td>
</tr>
</tbody>
</table>

| Peer | Understanding and sharing learning intentions and criteria for success | 4 Activating students as instructional resources for one another |

| Learner | Understanding learning intentions and criteria for success | 5 Activating students as the owners of their own learning |

Dylan Wiliam, *Embedded Formative Assessment*. Solution Tree (2011)
1. Clarifying, Sharing, & Understanding
Learning Intentions & Success Criteria

- Task-specific vs. generic rubrics
 - Task-specific: best for summative
 - Generic: best for formative

- Product-focused vs. Process-focused

- Official vs. Student-Friendly Language
Approaches to 1.

• Look at samples of other students' work, then rank them by quality
 • Engage students in quality process
 • Students frequently better at seeing issues in others' work
 • Not a "somebody wins" exercise, but a quality exercise
 • Consider using ranked voting, e.g. Condorcet
• Make explicit progressions within rubrics, and progressions across rubrics
• Have students design test items
• Presenting learning intentions and success criteria to students:
 • WALT: we are learning to
 • WILF: what I'm looking for
 • TIB: this is because
2. Eliciting Evidence of Learners' Achievement
In the (Extended) Classroom

- Asking questions in class:
 - Discussion/thinking trigger
 - Examples: ConcepTest, POE, Virtual Whiteboard
 - Incorrect answers have to be "interesting"
 - Can allow for:
 - Multiple correct answers
 - Varying degrees of correctness
 - Should provide info for varying instruction on the fly and long term
 - Make sure that answers cannot be constructed by accident
3. Providing Feedback that Moves Learning Forward

- Feedback must provide a recipe for future action

- Feedback should:
 - Be more work for the recipient than the donor
 - Not just right/wrong - make them think about what did not work
 - Be focused: less is more
 - Relate explicitly to goals/rubrics
Characteristics and Models for Feedback that Satisfies 3.

• When:
 • Provide feedback post-problem engagement
 • More "mindfulness" = more learning

• How:
 • Scores or praise alone do not provide this; comments do
 • Supplying minimal scaffolded responses (i.e., addressing where the student got stuck) >> supplying a full response to the problem
 • This emphasizes the crucial role of the draft object and process
 • Oral feedback >> written feedback
 • Consider using recordings
 • Create (sometimes together with students) process rubrics that embody this scaffold
 • Provide time for students to use this feedback

• Minimize grading:
 • Avoid false stopping points
 • Avoid ratchet effect
4. Activating Students as Instructional Resources for One Another

• Two key elements:
 • Group goals
 • Individual accountability
• Effectiveness due to (in order of importance):
 • Personalization
 • Cognitive Elaboration
 • Motivation
 • Social Cohesion
• Reciprocal help only works when it takes the form of elaborated explanations
 • Not simple answers or procedures
 • Looks to the upper levels of Bloom for both participants
• More effective (by a factor of up to 4) if the product being assessed is the result of the aggregate of individual contributions, rather than just one group product
5. Activating Students as Owners of their Own Learning

• Effective self-assessment is up to twice as effective as other-assessment
• Two key components:
 • Metacognition:
 • Metacognitive knowledge: know what you know
 • Metacognitive skills: what you can do
 • Metacognitive experience: what you know about your cognitive abilities
 • Motivation:
 • Traditionally viewed as a cause (intrinsic/extrinsic)
 • Better viewed as an outcome:
 • Flow: the result of a match between capability and challenge
 • Students are motivated to reach goals that are:
 • Specific
 • Within reach
 • Offer some degree of challenge
Student Sources for 5.

• 3 sources of info for students to decide what they will do:
 • Perceptions of the task and its context
 • Knowledge about the task and what it will take to be successful
 • Motivational beliefs
• The role of the draft process and object resurfaces as a crucial component here
• Crucial Tools:
 • Learning logs
 • Learning portfolios
Resources

- TPCK - Technological Pedagogical Content Knowledge. Online at: http://tpack.org