Augmenting Human Intellect & Learning Capacity

21st Century Learning

One-to-One Technologies
Defining Mobile Devices

• Three key characteristics:
 • Ubiquity
 • Intimacy
 • Embeddedness

• Two metaphors:
 • The Lively Sketchbook
 • The Curiosity Amplifier
Substitution
Tech acts as a direct tool substitute, with no functional change

Augmentation
Tech acts as a direct tool substitute, with functional improvement

Modification
Tech allows for significant task redesign

Redefinition
Tech allows for the creation of new tasks, previously inconceivable

Podcasts on iTunes U: http://tinyurl.com/aswemayteach
<table>
<thead>
<tr>
<th>Social</th>
<th>Mobility</th>
<th>Visualization</th>
<th>Storytelling</th>
<th>Gaming</th>
</tr>
</thead>
<tbody>
<tr>
<td>200,000 years</td>
<td>70,000 years</td>
<td>40,000 years</td>
<td>17,000 years</td>
<td>8,000 years</td>
</tr>
</tbody>
</table>
21st Century Learning (Mishra & Kereluik)

- **Foundational Knowledge**
 - Core Content Knowledge
 - Information Literacy
 - Cross-Disciplinary Knowledge/Synthesis

- **Meta Knowledge**
 - Problem Solving & Critical Thinking
 - Communication & Collaboration
 - Creativity & Innovation

- **Humanistic Knowledge**
 - Life & Job Skills
 - Cultural Competence
 - Ethical & Emotional Awareness
Bloom’s Taxonomy (Revised)
(Anderson and Krathwohl, 2001)

<table>
<thead>
<tr>
<th></th>
<th>Remember</th>
<th>Understand</th>
<th>Apply</th>
<th>Analyze</th>
<th>Evaluate</th>
<th>Create</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factual Knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conceptual Knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procedural Knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meta-Cognitive Knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Critical Thinking: Cognitive Skills and Subskills

<table>
<thead>
<tr>
<th>Skill</th>
<th>Subskills</th>
</tr>
</thead>
</table>
| Interpretation | • Categorization
| | • Decoding Significance
| | • Clarifying Meaning |
| Analysis | • Examining Ideas
| | • Identifying Arguments
| | • Analyzing Arguments |
| Evaluation | • Assessing Claims
| | • Assessing Arguments |
| Inference | • Querying Evidence
| | • Conjecturing Alternatives
| | • Drawing Conclusions |
| Explanation | • Stating Results
| | • Justifying Procedures
| | • Presenting Arguments |
| Self-Regulation | • Self-examination
| | • Self-correction |

Understanding Science: How Science Works

EXPLORATION AND DISCOVERY
- Making observations
- Asking questions
- Sharing data and ideas
- Finding inspiration
- Exploring the literature

TESTING IDEAS
- Gathering data
- Interpreting data
- Supporting, contradictory, surprising or inconclusive data may...
 - support a hypothesis.
 - oppose a hypothesis.
 - inspire revised/new hypotheses.
- Actual results/observations
- Expected results/observations

BENEFITS AND OUTCOMES
- Develop technology
- Address societal issues
- Build knowledge
- Satisfy curiosity
- Solve everyday problems

COMMUNITY ANALYSIS AND FEEDBACK
- Feedback and peer review
- Replication
- Discussion with colleagues
- Publication
- Coming up with new questions/ideas
- Theory building

New technology
Practical problem
Curiosity
Serendipity
Surprising observation
Personal motivation

How science works
www.understandingscience.org
© 2008 The University of California Museum of Paleontology, Berkeley, and the Regents of the University of California
It is imperative that the CCSS be considered the “floor”—not the “ceiling”—when it comes to expectations for student performance in the 21st century.
Using the *Framework for K-12 Science Education*

• **Core Idea PS4: Waves and their Applications in Technologies for Information Transfer**
 - PS4.A: Wave Properties
 - *What are the characteristic behaviors and properties of waves?*
 - PS4.B: Electromagnetic Radiation
 - *What is light?*
 - *How can one explain the varied effects that involve light?*
 - *What other forms of electromagnetic radiation are there?*
 - PS4.C: Information Technologies and Instrumentation
 - *How are instruments that transmit and detect waves used to extend human senses?*
Observe Waves
Basic Waves
Math Waves
Measuring Waves
Flipping the Classroom: Finding & Creating Resources
Flipping the Classroom: ConcepTests

Brief Lecture or Group Discussion (~10 minutes)

ConcepTest (~1-2 minutes)

- Fewer than 30% of students answer correctly
 - The instructor revisits and explains the concept

- Between 30-75% of students answer correctly
 - Peer Discussion: students try to convince each other (~2-3 minutes)

- More than 75% of students answer correctly
 - The instructor explains remaining misconceptions

ConcepTest (~1-2 minutes)

Which of these scenarios does not describe an acceleration?

A. A car going round a circular racetrack at constant speed.

B. A car traveling on a straight racetrack at constant speed.

C. A stone falling from the top of a building.

D. A simple pendulum.
Additional Resources – Part I

Augmenting Human Intellect & Learning Capacity:

SAMR and TPCK:

Additional Resources – Part II

Defining Mobile Devices/The Lively Sketchbook:

The Curiosity Amplifier:

Technology In Education: The First 200,000 Years:
Additional Resources – Part III

21st Century Learning, Bloom's Taxonomy and Critical Thinking:

Science for Students:
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.